Int. J. Solids Structures Vol. 32. No. 1, pp. 79-88, 1995
Copyright «; 1994 Elsevier Science Ltd
Pergamon

Printed in Great Britain. All rights reserved
0020 768395 $9.50 + .00
0020-7683(94)00082—4

ESTIMATION OF EFFECTIVE ELASTIC MODULI FOR
COMPOSITES

N. KATSUBE
Department of Engineering Mechanics, Ohio State University, Columbus, OH 43210, U.S.A.

(Received 3 August 1993 ; in revised form 4 May 1994)

Abstract—-The linearly elastic deformation of a composite material with matrix outer boundary is
shown to be governed by the matrix deformation, inclusion deformation and deformation due to a
change in the relative inclusion geometry. The latter deformation can be shown to be independent
of the inclusion material property. If the effective elastic moduli of a composite are known, then we
can estimate the effective elastic moduli of other composites with the same inclusion geometry and
matrix material, but with different inclusion materials. This is true for any inclusion geometry and
any inclusion volume fraction as long as the outer boundary of the sample consists of matrix
material.

1. INTRODUCTION

The estimation of effective elastic moduli for composite materials has been extensively
investigated. One is interested in how material properties of each phase and microgeometry
influence the overall response of the composite materials. While the subject has been well
developed, analytical expressions for effective elastic moduli for composite materials have
been limited. The inclusion geometry is relatively simple such as spherical particles and
fibers. The inclusion distribution is idealized and the interactions among inclusions are not
well understood. An extensive review on the subject is given by Christensen (1979) and
Hashin (1983).

Problems related to fluid-filled porous materials have been investigated by researchers
in geotechnical engineering. They are interested in fluid flow through porous materials and
interactions between a solid and a fluid. The classical theory by Biot and Willis (1957) has
been widely accepted. In this theory, the effect of pore fluid pressure on the overall defor-
mation of porous materials has been established within the linearly elastic assumption.
From a point of view that is slightly different from Biot, Carroll and Katsube (1983)
extended the notion of porosity to a three-dimensional case and introduced the notion of
relative pore geometry change. They have shown that the overall strain due to change in
relative pore geometry is determined by Terzaghi’s (1923) effective stress.

Since porous materials are special cases of composite materials, the theoretical devel-
opments have similarities. Corresponding to porosity and relative pore geometry change in
a porous material, we have inclusion volume fraction and relative inclusion geometry
change.

Since the relative pore geometry change is shown to be governed by Terzaghi’s effective
stress in fluid-filled porous materials, the question arises as to what kind of role the relative
inclusion geometry change plays in deformation of composite materials.

In order to answer this question, we introduce the notion of a corresponding porous
material where the inclusion material is removed from the composite material. As long as
the pointwise surface traction exerted from the inclusions to the matrix material is
considered, the deformation of the composite material can be analysed based on the
corresponding porous material. The process of cutting out the inclusion material while
keeping the same tractions at the outer and inner boundaries of the matrix material is
similar to the approach by Eshelby.

It is shown that the zero volume average stress in the matrix of the corresponding
porous material causes zero volume average strain. This makes it possible to extend the
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notion of Terzaghi’s effective stress to composite material as long as the hydrostatic fluid
pressure inside the pores is replaced by the volume average inclusion stress tensor. The
overall strain due to a change in relative inclusion geometry is determined by this extended
Terzaghi’s effective stress. The linearly elastic deformation of a composite material with
matrix outer boundary is governed by the deformation of the matrix, inclusion and relative
inclusion geometry change.

The relative inclusion geometry change measures microstructural change in composites
including interactions among inclusions. In a composite material sample with matrix outer
boundary, the deformation due to relative inclusion geometry change is independent of the
inclusion material property. Because of this, if the effective elastic moduli of a composite
sample is known, we can estimate the effective elastic moduli of other composite samples
with the same inclusion geometry and matrix material but with different inclusion materials.

When the inclusion volume fraction is relatively small, then the outer boundary of the
representative volume element mostly consists of matrix material. Therefore, the developed
method of estimating effective elastic moduli can be used for composites with any inclusion
geometry as long as the inclusion volume fraction is not large.

For the purpose of illustrating the detailed method, as in Katsube (1991), the developed
method is applied to composites with spherical inclusions. The effective bulk and shear
moduli for a composite material with spherical inclusions are obtained from the effective
bulk and shear moduli for a porous material with spherical pores. They are identical to
those obtained by Hashin’s spherical composite model.

The effective bulk and shear moduli for a composite material with spherical inclusions
have been applied for practical cases where the volume fraction of inclusion is reasonably
large. Therefore, the developed method of estimating effective elastic moduli can possibly
accommodate the range of inclusion volume fraction that typically occurs in practice.

2. PRELIMINARIES

We will use the volume average stress theorem and the volume average strain theorem
as shown:

. 1
l,, = WJ‘R[;/ (X) dL‘

1
= V‘(‘R_)[.RZIF(X)XJ da N

1
e,; = mLeU(x) dv
= —?‘-ﬁ LR(u,-(x)nj +u,(x)n;) da. 2

The stress tensor components ¢; and the infinitesimal strain components e; are averaged
over a body occupying a region R with boundary ¢R. The volume of the region R, the
components of the surface traction, the displacements and the unit outward normal on ¢R
are respectively denoted by V(R), t,, u;and n,. The average stress theorem (1), which applies
in the case of equilibrium and in the absence of body force, shows that the average stress is
determined by the loading and the geometry of the deformed body, independently of the
material response. The average strain theorem (2) allows us to define the strain of a region
in terms of the geometry and the surface displacements. Equations (1)—(2) follow directly
from the definitions of surface force and infinitesimal strain, the equation of equilibrium
and the divergence theorem.

We consider the mechanical response of a sample of an anisotropic two phase com-
posite material subject to a constant surface traction on the outer boundary B, as follows:
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I: t,=tyn; onbB,

where ¢, are constants. As long as the outer boundary is made of the matrix material, the
inclusion can be of any geometry, and the volume fraction of inclusion does not have to be
small.

By applying eqn (1) to the total region R, the matrix region R, and the inclusion
region R; of the representative volume element, we respectively introduce the total average
stress 7, the matrix average stress 7 and the inclusion average stress ¢;. Similarly, by
applying eqn (2), to each region, we respectively introduce the total average strain e, the
matrix average strain ]} and the inclusion average strain e},. It is important to note that
since the inclusion strain is defined in terms of a surface integral through eqn (2), it does
not require the strain field inside the inclusion region. The bar to indicate volume average
values is omitted for convenience.

Introducing the volume fraction of the inclusion ¢ of the representative volume
element, we obtain eqns (4)—(5) from the definitions of volume average stress and strain:

¢ =WV 3
ty = (1= )] + ¢t 4
e; = (L—)ef} + dej;. &)

Equation (4) may be written as follows:

m_ P
Ly =t — 1—¢ iy (6)

where

{tyy = ty—t;. )

(t;7> defined by eqn (7) may be considered as a modified Terzaghi effective stress, which
has been widely used in fluid-filled porous materials.
Equation (5) may be written as follows :

where

el = dle;—ey 9

Equation (8) resolves the total strain of the two phase composite material into a component
due to the matrix strain ¢j} and one due to the change in relative inclusion geometry (or
differential straining of the inclusion and the matrix) e.

Within the linear assumption, the volume average response is the same as the local
response. Therefore we have the following equations:

5= Mjuen, ef = Chyti (10)
ti = Migew, e; = Culy (11)

where My, and M;,, are the elastic moduli tensor components of the matrix and inclusion
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materials, respectively. The corresponding compliance tensor components are respectively
denoted by C}}; and Cjy,. The pair of compliance and moduli tensors satisfy :

Cijk/Mk/r.\ = % (51')‘5/,\' + 5!"\'5_[1‘) . (1 2)

3. ZERO VOLUME AVERAGE STRESS AND STRAIN

Under the assumption of a sample with matrix outer boundary, the matrix is bounded
by the outer boundary B, and the inner boundary B;.

Due to the inclusions, the stress state in the representative volume element is not
uniform even though the outer boundary is subject to the constant surface traction I.
Therefore, the matrix is subject to a complicated pointwise surface force on the inner
boundary as follows :

ti=tyn, onB
I1: °

t;, =1t(x) onB8,.

By removing the inclusion material from the composite material, we will recover a
corresponding porous material where the pore geometry and porosity, respectively, are
identical to the inclusion geometry and inclusion volumetric fraction. If we apply the same
boundary conditions II to the corresponding porous material, the pointwise stress and
strain at the corresponding points of the porous material and composite material are the
same. Therefore, the overall strain of the composite material subject to the loading I is
identical to that of the corresponding porous material subject to the loading 11.

We now examine the deformation mechanisms of the composite material through the
analysis of the corresponding porous material. Applying eqns (1) and (2) to the cor-
responding porous material, we can define the volume average stress and strain of the pore
space. This leads to a set of equations (3)—(9) where the superscript i should be interpreted
as the corresponding pore space. Focusing our attention on the corresponding porous
material subject to the loading I, we decompose the loading II into parts HI and IV :

t; = tyh, onB,
I1:
l = ’;knk on Bi

;=0 on B,
Iv: _
t, = t(X)—tyn, onbhB,.

Using eqn (1) and the divergence theorem we can show that the volume average stress
of the solid matrix subject to the loading IV is zero as follows:

1 1 Vl 1 I/‘ l
7m " (t(x) — tyn)x; da = *I;.m Vl . t(x)x;da |— ﬁ =0

Furthermore, the loading IV causes zero volume average stress in the pore space and in the
corresponding porous material. Because of the linearity, this implies zero volume average
strain in the solid matrix, in the pore space and in the porous material. Therefore, as long
as we limit our analysis to the volume average quantities, we can eliminate the loading IV
from our discussions.

4. TERZAGHI EFFECTIVE STRESS

Within the linear assumption, the loading I for the solid matrix may be decomposed
into two component loadings as follows:
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l;=t;n;, onbkB,

t;=t;n; onbk,

L= (t;—t;j)n; onB,
VI:
L= (t;—t7)n, onB,.

The loading V causes a uniform strain in the solid matrix. The overall strain of the
corresponding porous material is the same as that of the solid matrix because the loading
V is achieved by filling the pores with the matrix material and applying constant surface
traction £7n; on the outer boundary of the homogeneous material. Since the loadings 111
and V respectively cause a total strain e, and e[}, from eqn (8), we conclude that the loading
VI causes a total strain e}.

The loading VI may be further decomposed into two component loadings as follows :

L= (th—tp)m onB,
VII: _
1, =(t;—t;)n, onBh,

t,=(1 _¢)(tinj]_t}/‘)nj on B,
t;,=0 on B;.

VIII:

The loading VII causes a total strain

(e/;‘)V[I = CI?}\I([;\/_[I{Y;) (13)

The loading VIII causes a total strain

(ei)vin = (1 —)Cla el — 1) (14)
where Cfy) is the effective compliance tensor components of the corresponding porous
material.

Since the total strain e is the sum of the total strains due to the loadings V1I and VIII
as in eqn (15), eqns (4),(7),(13)—(15) lead to eqns (16) and (17):

el = (ey)vu+(e;)vin (15)
el = Ch (>, > = MEek (16)

where
?ﬁ-l = Ci(/“ - i)ﬁﬁ ,‘7“ (17)

In eqn (16), we have shown that the total strain due to a change in relative inclusion
geometry e is determined by Terzaghi effective stress. The corresponding compliance and
moduli tensors are denoted by C¥%, and M}, respectively, and they satisfy eqn (12). The
effective elastic compliance tensor of the corresponding porous material C{}; depends on
the material property of the matrix and the corresponding pore geometry. Therefore eqn
(17) shows that the compliance tensor C%, depends on the material property of the matrix
and the inclusion geometry, and it is independent of the material property of the inclusion.
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5. THREE DISTINCT DEFORMATION MECHANISMS

In our point of view, the basic response equations for linearly elastic deformation of a
composite material with matrix outer boundary can be summarized as follows :

ey =efl ek, ek =g —el) (18)
_ M d) _ i 19
Ly =t — m<1u‘> s Kty =1t;—1 (19)
e = Cixlid (20)

é’,i,' = C;/kltll(i 2D

el = Chitu). (22)

The above equations are parallel to the basic response equations for linearly elastic
deformation of fluid-filled porous materials. Carroll and Katsube (1983) have made clear
the three deformation mechanisms of fluid-filled porous materials, i.e. the matrix response,
hydrostatic fluid response and relative pore geometry change mechanism. It has also been
shown that Terzaghi effective stress determines the relative pore geometry change.

In the above set of equations, we have clarified the following three points.

(1) Linearly elastic deformation of a composite sample with matrix outer boundary is
governed by the three distinct deformation mechanisms, i.e. the matrix response, the
inclusion response and the relative inclusion geometry change mechanism.

(2) The notion of Terzaghi effective stress can be extended to composite materials as
long as we replace the hydrostatic fluid pressure by the volume average inclusion stress
tensor.

(3) The relative inclusion geometry change is determined by Terzaghi effective stress.

6. EFFECTIVE ELASTIC MODULI

Based on the three distinct deformation mechanisms described in the previous section,
we now obtain the effective elastic moduli for a composite material with matrix outer
boundary. Inserting eqns (10), and (11), into eqn (5) and eliminating 7, from the resulting
equation and eqn (4), we obtain:

1
= 1—¢ Myle— Cinty] (23)

where

CE;‘A-/ = Cﬂ}\-i— }/‘kl (24)

and M}, and Cj}, satisfy eqn (12).
Combining eqns (4), (7) and (16), we have :

I-¢

TC?}k/(tﬂ—tk/)- (25)

*
€=

Inserting eqns (10), ana (25) into eqn (8) and eliminating ¢ from the resulting equation
and eqn (23). we obtain :
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] 1 | ¢—1
Ci; = (m C;TA/ + a C:‘A/)M/:{/vs [elt\' - C:.\'pq [pq] + T C;'/‘kl . (26)

Rewriting eqn (26), we obtain the response equation for a composite sample as follows :

by = Myen, e; = Coytiy 27

where

1 1 S 5 3 l m 1 — ¢ E3 A
Ml'/'/(/ = Cfl'k/ Y (bpkoql + Opléqk) -7 L pgrs T Cpt/):v Mrsk/ (28)
2 1—¢ ¢
and
$—1 Lo 1 i

i?k/ = d) C:FI\I_ 1 —d) iipy + 7 C;rpq M,ﬁ/r,\ rski+ (29)

Two pairs of fourth-order tensors, M, and C,;,, and M}, and C5,, respectively satisfy eqn
(10). The important point about eqn (28) with definitions (24) and (29) is that the effective
elastic moduli tensor for a composite sample M, can be expressed in terms of CJ},, C ,?,-k,
and C},, which describe the three distinct deformation mechanisms.

Solving the effective moduli tensor equation (28) for C}%,, we obtain:

1
L — . m A 1
C[/Al - |: C,-/-,MIM,",,,(,C M

| .
1 — ¢ nopg ¥ pgrs = m C;;IUM:I’H'X + 5 (oira/'v + 5[.&‘0/1'):|C5k1 (30)

where

. ¢l 1

. 1
My, =—My,——-M j;‘n- CrpgM s+ - M {;‘11\'/ 31
¢ ¢

¢

and M, and C§, satisfy eqn (10). The right-hand side of eqn (30) can be determined if
Cl, Cias and Cy, are known.

Suppose that we know the effective elastic moduli tensor of a composite as well as the
elastic moduli tensors of the matrix and the inclusion, and the inclusion volume fraction.
Then from eqn (30), we can determine the compliance tensor of the relative inclusion
geometry change Cj,. We recall from eqn (17) that C%, is independent of the inclusion
material property. Because of this, given a new composite material which has the same
matrix material and inclusion geometry as the original composite but a different inclusion
material, C}¥, will be the same as the original composite. If we know the inclusion elastic
moduli tensor of this new composite material, a set of equations (27)—(29) can be used in
estimating effective elastic moduli of the new composite material.

7. ISOTROPIC CASE

When both the matrix and inclusion materials of a composite sample are isotropic and
inclusions are randomly distributed and spherical, then C},, Ciy; and CJ, become isotropic
tensors. For example, we have eqns (32)-(33) corresponding to eqn (17):
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1 1 1
S . 32
K* KD (1—¢)K™ G2

I I 63
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where K*, KV, K™ and u*, u'", u™ are, respectively, the bulk and shear moduli of the
relative inclusion geometry change, the corresponding porous material and the matrix.
Equation (28) reduces to:

_ gy S KD @K (1=K
PK*+(1=$) K + (1 - p)K™

K

(34)

p=p"+ Pl — ™) (Pp* + (1 —P)u™) (35)

Pur+(1 =)' + (1 — p)u”

where K and pu are, respectively, the effective bulk and shear moduli of the composite.
Equation (30) reduces to:

_ (=) {K'K"— (1-$)K K- K"K}
P{K—pK' — (1~ )K"}

*

(36)

o U= e — (L =)pn—du"uj

Glp—du' —(1—p)u™} G

1!

Analytical expressions of the effective bulk and shear moduli for a composite material
with spherical inclusions have been obtained based on the spherical composite model
(Hashin, 1962). We can recover these effective elastic moduli from the developed methods
and the effective elastic moduli for a porous material with spherical pores. The effective
bulk and shear moduli of a hollow sphere obtained by Mackenzie (1950) and eqns (32)-
(33) lead to:

a1
K* = % (38)
lt* _ (1 w(ﬁ)llrn {gKn'l +8#n\ _5(1)(3Kn] +4ﬂm)}. (39)

6¢(Km+2#m)

Inserting eqns (38)—(39) into eqns (34)—(35). respectively, we recover the expression of the
effective bulk and shear moduli for a composite with spherical inclusions:
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3 Km (/)(K|_Km)(3A/m +4'um)

K= : (40)
3K 4™ —3p(K — K™)
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u

Using Poisson’s ratio,

3IK—-2u
At 42
" T 206K+ ) “42)
in eqn (41), we have
15¢(1*vm)<1— ’“‘m>
1

- ! . 43)

IL‘ 7_5vm+2(4_5vm)7/{_

Atﬂ]

Equations (40) and (43), respectively, are identical to eqns (3)—(17) and (2)-(23) in
Christensen (1979).

8. DISCUSSION

If we regard a composite sample as a representative volume element, the outer bound-
ary of an actual representative volume element consists of the matrix and inclusion
materials. When the volume fraction of the inclusions is relatively small, most of the
outer boundary of a representative volume element consists of the matrix material. The
assumption of a representative volume element with matrix outer boundary is good only
in the case where the inclusion volume fraction is not very large.

The range of inclusion volume fraction to which the developed method can be effec-
tively applied is not clearly known. However, in composites with spherical inclusions, the
validity of the current method is proven based on the spherical composite model. The
spherical composite model can be effectively used for some practical cases where the volume
fraction is reasonably large. Therefore, it may be reasonable to assume that the developed
method can also be applied to similar situations. The key point of the developed method is
that it can be applied to composites with arbitrary inclusion geometry. Theoretically the
shape, size and distribution of inclusion are arbitrary as long as the inclusion volume
fraction remains small. Our method can, however, possibly accommodate the range of
inclusion volume fraction that typically occurs in practice based on the example shown.
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